Dividing Radicals!
Rules for Radicals

1. Radicals must be simplified. (No perfect squares left under the radical $\sqrt{ }$)
2. No fractions under the radical $\sqrt{ }$
3. No $\sqrt{ }$ in the denominator of the fraction. Rationalize the denominator!!!!!

How do we get rid of the radical in the denominator?

Now let's divide those radicals!
Simplify.

1. $\frac{\sqrt{5}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{15}}{\sqrt{9}}=\frac{\sqrt{15}}{3}$ 2. $\frac{\sqrt{7}}{\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}=\frac{\sqrt{42}}{6}$
2. $\sqrt{\frac{21}{7}}=\sqrt{3}$
3. $\sqrt{\frac{18}{5}}=\frac{\sqrt{18}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}$
4. $\frac{6 \sqrt{10}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{6 \sqrt{30}}{3}$
5. $\frac{11}{\sqrt{22}} \cdot \frac{\sqrt{22}}{\sqrt{22}}$

$$
=\frac{\sqrt{90}}{5}=\frac{3 \sqrt{10}}{5}=2 \sqrt{30} \quad=\frac{11 \sqrt{22}}{22}=\frac{\sqrt{22}}{2}
$$

7. $\frac{\sqrt{35}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{70}}{2}$
8. $\frac{12 \sqrt{51}}{\sqrt{7}} \cdot \frac{\sqrt{7}}{\sqrt{7}}=$

$$
\frac{12 \sqrt{357}}{7}
$$

9. $\frac{16 \sqrt{21}}{\sqrt{6}}=\sqrt[16]{\frac{21}{6}}$

$$
\begin{aligned}
& =16 \sqrt{\frac{7}{2}}=\frac{16 \sqrt{7}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
& \frac{16 \sqrt{14}}{2}=8 \sqrt{14}
\end{aligned}
$$

10. $\frac{35 \sqrt{7}}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}}=\frac{35 \sqrt{35}}{5} 11 . \quad \frac{3 \sqrt{5}}{\sqrt{5}}=3$

$$
=7 \sqrt{35}
$$

12. $\frac{4 \sqrt{6}}{\sqrt{3}}=4 \sqrt{\frac{b}{3}}$

$$
=4 \sqrt{2}
$$

